Darikegiatan di atas, dapat dilihat bahwa volume air yang dituangkan ke dalam wadah setengah bola tidak berubah. Ini berarti, untuk bangun setengah bola, dan kerucut yang berjari-jari sama, dan tinggi kerucut sama dengan dua kali jari-jarinya maka : Volume Setengah Bola = Volume Kerucut 33. 34. 1. Adi memiliki dua buah tabung kaca.
PembahasanIngat bahwa rumus luas setengah bola tertutup dengan jari-jari r adalah 3 π r 2 . Pada soal, diketahui luas setengah bola tertutup adalah , maka panjang jari-jarinya dapat ditentukan dengan cara sebagai berikut. L 45 π r 2 r 2 r ​ = = = = = ​ 3 π r 2 3 π r 2 3 π 45 π ​ 15 ± 15 ​ ​ Karena r merupakan panjang jari-jari, maka nilainya tidak mungkin negatif. Dengan demikian, panjang jari-jari setengah bola tertutup tersebut adalah 15 ​ m .Ingat bahwa rumus luas setengah bola tertutup dengan jari-jari adalah Pada soal, diketahui luas setengah bola tertutup adalah , maka panjang jari-jarinya dapat ditentukan dengan cara sebagai berikut. Karena merupakan panjang jari-jari, maka nilainya tidak mungkin negatif. Dengan demikian, panjang jari-jari setengah bola tertutup tersebut adalah . Berapakahluas permukaan bangun setengah bola tertutup berikut a 8 cm. Lamhienxinh 4 months ago 5 Comments. Akses instan ke jawaban di aplikasi kami. Dan jutaan jawaban atas pertanyaan lain tanpa iklan. Lebih pintar, unduh sekarang! atau. Lihat beberapa iklan dan buka blokir jawabannya di situs .
Tentukan jari-jari dari bola dan setengah bola tertutup berikut L = 729π cm², L = 27π m², pembahasan kunci jawaban Matematika kelas 9 halaman 303 304 305 Latihan Bola beserta caranya materi Semester 2. Silahkan kalian pelajari materi Bab V Bangun Ruang Sisi Lengkung pada buku matematika kelas IX Kurikulum 2013 Revisi 2018. Pembahasan kali ini merupakan lanjutan dari tugas sebelumnya, dimana kalian telah mengerjakan soal Luas Permukaan Bangun Setengah Bola Tertutup Berikut 8 cm Halaman 303 secara lengkap. Latihan Bola 4. Tentukan jari-jari dari bola dan setengah bola tertutup berikut. Jawaban a. Lp = 4πr² 729π = 4πr² 729 = 4r² r² = 729/4 r² = 182,25 r = √182,25 = 13,5 cm Jadi, panjang jari-jari bola adalah 13,5 cm b. V = 4/3 πr³ = 4/3 πr³ = 4/3 r³ r³ = x 3/4 r³ = r = ³√ = 12 cm Jadi, panjang jari-jari bola adalah 12 cm c. V = 4/3 πr³ 36π = 4/3 πr³ 36 = 4/3 r³ r³ = 36 x 3/4 r³ = 27 r = ³√27 = 3 cm Jadi, panjang jari-jari bola adalah 3 cm d. L = 3πr² 27π = 3πr² 27 = 3r² r² = 27/3 r² = 9 r = √9 = 3 m Jadi, panjang jari-jari bola adalah 3 m e. L = 3πr² 45π = 3πr² 45 = 3r² r² = 45/3 r² = 15 r = √15 = 3,873 m Jadi, panjang jari-jari bola adalah 3,873 m f. V = ½ . 4/3 . πr³ 128/3 π = 4/6 πr³ 128/3 = 4/6 r³ r³ = 128/3 x 6/4 r³ = 32/1 x 2/1 r³ = 64 r = ³√64 = 4 cm Jadi, panjang jari-jari bola adalah 4 cm 5. Berpikir kritis. Terdapat suatu bola dengan jari-jari r cm. Jika luas permukaan bola tersebut adalah A cm² dan volume bola tersebut adalah A cm3, tentukan a. nilai r b. nilai A Jawaban a. Lp = V 4πr² = 4/3 πr³ 4r² = 4/3 r³ 4 = 4/3 r r = 4 x 3/4 r = 3 cm Jadi, nilai r adalah 3 cm b. Lp = 4πr² A = 4π3² A = 4π9 A = 36π Jadi, nilai A adalah 36π 6. Jawaban, buka disini Bangun di Samping Dibentuk Dari Dua Setengah r1 r2 Bola yang Sepusat Demikian pembahasan kunci jawaban Matematika kelas 9 halaman 303 304 305 Latihan Bola pada buku semester 2 kurikulum 2013 revisi 2018. Semoga bermanfaat dan berguna bagi kalian. Kerjakan juga pembahasan soal lainnya. Terimakasih, selamat belajar!
Latihansoal pilihan ganda PTS Matematika SMP Kelas 9 dan kunci jawaban. Panjang jari-jari alas tabung 14 cm dan tingginya 10 cm. Jika panjang jari-jari diperpanjang satu setengah kali ukuran semula maka selisih volume kedua tabung adalah cm3. Sebuah tangki berbentuk tabung tertutup mempunyai volume 2.156 cm3, sedangkan tingginya 14 cm
Tentukan jari-jari dari bola dan setengah bola tertutup cm² cm² m² m² m² Besok Dikumpulin Jawaban soal mencari jari-jari bola terlampir
Penjelasandengan langkah-langkah: a. L = 4 x x r^2. 729 = 4 x r^2. r^2 = 729: 4 = 182,25. r = = 13,5 cm. b. V = 4/3 x x r^3. 2304 = 4/3 x r^3. r^3 = 2304 x 3/4 = 1728. r = = 12 cm. c. 36 = 4/3 x r^3. r^3 = 36 x 3/4 = 27. r = = 3 cm. d. L = 1/2 x 4 x x r^2. L = 2 x x r^2. 27 = 2 x r^2. r^2 = 27: 2 = 13,5. r = = 3,67 cm. e. r^2 = 45: 2 = 22,5. r = = 4,74 cm. f. r^3 = 128/3 x 3/4 = 32. r = = 3,1 cm
Pusat Jawaban Latihan Bola – Berikut ini adalah pembahasan dan Kunci Jawaban Ilmu hitung Inferior 9 Semester 1 Halaman 303 – 305. Gerbang 5 Bangun Ira Sisi Lengkung Latihan Keadaan 303 – 305 Nomor 1 – 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan pertanyaan matematika cak bagi papan bawah 9 di semester 1 jerambah 303 – 305. Lihat Juga Ki akal Jawaban Tuntunan Silinder Cak bimbingan Bola 1. Tentukan luas meres dan volume pulang ingatan bola berikut. Jawaban bola = 4/3 x π × r³Luas meres bola = 4 × π × r² a Luas = 4 x π x 12 x 12 = 576π m² Volume = 4/3 x π x 12 x 12 x 12 = 2304π m³ b Luas = 4 x π x 5 x 5 = 100π cm² Tagihan = 4/3 x π x 5 x 5 x 5 = 500/3π cm³ c Luas = 4 x π x 6 x 6 = 144π dm² Volume = 4/3 x π x 6 x 6 x 6 = 288π dm³ d Luas = 4 x π x 4,5 x 4,5 = 81π cm² Volume = 4/3 x π x 4,5 x 4,5 x 4,5 = 243/2π cm³ e Luas = 4 x π x 10 x 10 = 400π m² Volume = 4/3 x π x 10 x 10 x 10 = 4000/3π m³ f Luas = 4 x π x 15 x 15 = 900π m² Piutang = 4/3 x π x 15 x 15 x 15 = 4500π m³ 2. Berapakah luas latar bangun segumpal bola tertutup berikut. Jawab a garis tengah 8 cm Karena diameter = 8 cm maka ujung tangan-jarinya = 4 cm, karena jari-jari sehelai dari diameter Luas rekahan bola pepat padat = 3 x π x r² = 3 x 3,14 x 4² = 150,72 cm³ Penyelesaian soal b ganggang 12 cm Luas pecahan bola lebar padat = 3 x π x r² = 3 x 3,14 x 12² = cm³ Penyelesaian tanya c diameter 12 cm Karena diameter = 12 cm maka jari-jarinya = 6 cm, karena jemari-jari sekacip dari diameter. Luas belahan bola pepat padat = 3 x π x r² = 3 x 3,14 x 6² = 339,12 cm³ Perampungan soal d Jari-jari 8 m Luas rekahan bola tumpul pisau padat = 3 x π x r² = 3 x 3,14 x 8² = 602,88 m³ Penyelesaian soal e Diameter 15 m Karena diameter = 15 m maka jari-jarinya = 7,5 m, karena deriji-ujung tangan setengah terbit diameter. Luas belahan bola tumpul pisau padat = 3 x π x r² = 3 x 3,14 x 7,5² = 529,875 m³ Penyelesaian soal f Jari-ujung tangan 11 dm Luas pecahan bola pepat padat = 3 x π x r² = 3 x 3,14 x 11² = m³ 3. Dari soal-soal nomor 2 tentukan rumus untuk cak menjumlah luas permukaan setengah bola tertutup. Jawab Tentukan rumus menotal luas bidang secebirbola terlayang. Bolaadalah bangun urat kayu 3 dimensi yang terdiri dari beberapa gudi yang tak hingga jumlahnya dengan jari-jari yang sama. Rumus-rumus akan halnya siuman ira bola 1 Volume bola = ⁴/₃ x π x r³ 2 Luas permukaan bola = 4 x π x r² 3 Luas belahan bola pesek padat = 3 x π x r² Pembahasan Luas setengah bola = ¹/₂ x Luas permukaan bola = ¹/₂ x 4 x π x r² = 2 x π x r² Luas setengah bola terpejam = ¹/₂ x Luas permukaan bola + Luas limbung tutup = ¹/₂ x 4 x π x r² + π x r² = 2 x π x r² + π x r² = 3 x π x r² Secarik bola tertutup disebut juga bola pejal. 4. Tentukan terali berusul bola dan setengah bola tertutup berikut. Jawab a. Bola b. Bola c. Bola d. Sekeping Bola Terlayang e. Sekerat Bola Tertutup f. Sekerat Bola Terpejam 5. Berpikir kritis. tedapat suatu bola dengan jemari jari r cm. jika luas latar bola tersebut adalah a cm³ dan volume bola tersebut adalah A cm³. tentukan Jawab Bola merupakan siuman ruang sisi lengkung yang dibentuk bermula enggak setakat pematang yang memiliki jari-jari yang sama dan lagi berfokus dititik yang seimbang. Jumlah sisi puas bola saja ada 1 sebelah yang merupakansisi lengkungnya. Bola sebenarnya boleh dibuat dengan merotasi/memutar 1/2 pematang sebesar 360° dengan sengkang sebagaikancing persebaran. Bola dalam jiwa sehari-tahun yang berbentuk bola ialah olahraga voli, sepakan bola, basket, globe, kelici, dll. Luas satah bola Untuk Luas parasan bola ialah ekuivalen dengan hasil bersumber 4 kali bekuk berpokok luas landasan dengan jari-jari diameter yang sepadan atau bisa dituliskan sebagai berikut. Luas lingkaran = πr² Luas bola = = 4 x πr² = 4πr² Volume bola Volume bola ialah sebabat dengan dikalikan dengan pangkat tiga dari jari-jari bola tersebut atau dapat dituliskan sebagai berikut. Diketahui Ganggang =rcm Luas parasan =a cm² Volume =A cm³ Ditanya a nilair celah Diketahui bahwa luas meres bola nilainya sebagai halnya volume bola, maka persamaanya yaituL = V. L = V 4πr² = πr³ 4 x = sesama π dihilangkan 3 = 3 = r r = 3 cm b nilaia luas rataan Luas = 4πr² = 4 x π x 3²menggunakan 3,14 karena 3 tak kelipatan 7 =4 x 9 x π cm² = 36π cm² 6. Bangun di samping dibentuk bermula dua setengah bola yang sepusat. Setengah bola yang lebih kecil memiliki jari-deriji r1 = 4 cm sedangkan yang lebih segara memiliki celah r2 = 8 cm. Jawab a. luas satah sadar tersebut Luas permukakan = ½ × luas satah bola besar + ½ × luas parasan bola kecil + luas galangan osean – luas galangan kerdil Luas latar = ½ × 4π82 + ½ × 4π42 + π82 – π42 Luas satah = 128π + 32π + 64π – 16π Luas permukaan = 208π cm² b. volume siuman tersebut​ V = 2/3 π rb³ – 2/3 π ra³ V = 2/3 π rb³- ra³ V = 2/3 π 8³- 4³ V = 2/3 π 512 – 64 V = 2/3 π 448 V = 896/3 π 7. Analisis kesalahan. Lia cak menjumlah luas bidang bola dengan cara memberi debit bola dengan jari-jari bola tersebut L = V/r. Tentukan kesalahan yang dilakukan oleh Lia. Jawab Jika , maka Rumus ini enggak tepat karena seharusnya koefisien luas rataan bola adalah . Luas rataan bola yang sopan adalah . 8. Bola di dalam kubus. Terdapat satu kardus dengan janjang sisi s cm. Kerumahtanggaan kubus tersebut terwalak bola dengan kondisi semua sisi kubus sampai ke bola lihat gambar di samping. a. Tentukan luas permukaan bola tersebut. b. Tentukan volume bola tersebut. Jawab a. Luas Permukaan Bola b. Volume Bola 9. Kardus di dalam bola. Terdapat suatu karton dengan janjang sisi s cm. Karton tersebut berada di dalam bola dengan kondisi semua titik sudut kubus menyentuh bola. a. Tentukan luas meres bola tersebut. b. Tentukan volume bola tersebut. Jawab a. Luas Rataan bola tersebut b. Volume bola tersebut 10. Timbangan dan kelereng. Timbangan dan kelereng. Andi punya dua keberagaman kelereng. Kelereng keberagaman I berjari-deriji 2 cm sedangkan varietas II berjari-jari 4 cm. Andi melakukan eksperimen dengan menggunakan timbangan. Timbangan arah kiri diisi dengan kelereng tipe I sedangkan sisi kanan diisi dengan kelereng keberagaman II. Tentukan perbandingan banyaknya kelici pada sisi kiri dengan banyaknya kelereng pada sisi kanan agar timbangan tersebut seimbang. Jawab Keterangan Maka Karena yang ditanyakan skala banyak kelereng seharusnya timbangan setinggi, maka perbandingannya dibalik menjadi Lihat Juga Kunci JAwaban Pelajaran Kerucut
Kemudianpasir itu di tuangkan ke dalam setengah bola. Ternyata, setengah bola itu akan penuh setelah diisi dengan dua kerucut penuh pasir. Jika diameter dari bola dan tinggi tabung sama yaitu 60 cm, tentukan volume air yang dapat di tampung bola. Jawab . V air = V tabung- V bola V air = 169.560 - 113.040 = 56.520 cm3. 2. Terdapat dua
BerandaTentukan jari-jari dari setengah bola tertutup ber...PertanyaanTentukan jari-jari dari setengah bola tertutup berikut. f. IKI. KumaralalitaMaster TeacherMahasiswa/Alumni Universitas Gadjah MadaPembahasanDiketahui volume dari setengah bola tertutup besarnya . Jari-jari bola tersebut adalahDiketahui volume dari setengah bola tertutup besarnya . Jari-jari bola tersebut adalah Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!232Yuk, beri rating untuk berterima kasih pada penjawab soal!AHAgustina Hariyati Pembahasan lengkap banget©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
sobatlihat, nilai s sebenarnya dapat di cari dari phytagoras jari-jari dengan tinggi s =. Sehingga rumus luas kerucut menjadi. Luas Kerucut = ∏ r s + ∏ r 2 = ∏ r (r+s) bisa juga seperti di bawah ini Luas Kerucut = ∏ r (r+) r = jari-jari t = tinggi ∏ = 3,14 atau 22/7 Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 303 - 305. Bab 5 Bangun Ruang Sisi Lengkung Latihan Hal 303 - 305 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 303 - 305. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 9 dapat menyelesaikan tugas Bangun Ruang Sisi Lengkung Kelas 9 Halaman 303 - 305 yang diberikan oleh bapak ibu/guru. Kunci Jawaban MTK Kelas 9 Semester Latihan Halaman 303 Matematika Kelas 9 BolaKunci Jawaban Matematika Kelas 9 Halaman 303 - 305 Latihan Tentukan luas permukaan dan volume bangun bola Volume bola = 4/3 x π × r³Luas permukaan bola = 4 × π × r²a Luas = 4 x π x 12 x 12= 576π m²Volume = 4/3 x π x 12 x 12 x 12= 2304π m³b Luas = 4 x π x 5 x 5= 100π cm²Volume = 4/3 x π x 5 x 5 x 5= 500/3π cm³c Luas = 4 x π x 6 x 6= 144π dm²Volume = 4/3 x π x 6 x 6 x 6= 288π dm³d Luas = 4 x π x 4,5 x 4,5= 81π cm²Volume = 4/3 x π x 4,5 x 4,5 x 4,5= 243/2π cm³e Luas = 4 x π x 10 x 10= 400π m²Volume = 4/3 x π x 10 x 10 x 10= 4000/3π m³f Luas = 4 x π x 15 x 15= 900π m²Volume = 4/3 x π x 15 x 15 x 15= 4500π m³2. Berapakah luas permukaan bangun setengah bola tertutup Volume setengah bola = 4/3 x π × r³ / 2Luas permukaan setengah bola = 4 × π × r² / 2 + π × r²a Luas = 48π cm²Volume = 128/3π cm³b Luas = 432π cm²Volume = cm³c Luas = 108π cm²Volume = 144π cm³d Luas = 192π m²Volume = m³e Luas = 675/4π m²Volume = m³f Luas = 363π dm²Volume = dm³3. Dari soal-soal nomor 2 tentukan rumus untuk menghitung luas permukaan setengah bola Luas permukaan stengah bola = luas permukaan bola/2 + luas lingkaran = 4πr²/2 + πr²= 3πr²4. Tentukan jari-jari dari bola dan setengah bola tertutup a L = 4 × π × r²729π = 4 x π x r²r = √729/4r = 27/2 cmb V = 4/3 x π × = 4/3 x π x r³r³ = x 3/4r = 12 cmc V = 4/3 x π × r³36π = 4/3 x π x r³r³ = 36 x 3/4r = 3 cmd L = 3 × π × r²27π = 4 x π x r²r = √27/3r = 3 me L = 3 × π × r²45π = 3 x π x r²r = √45/3r = √15 mf V = 2/3 x π × r³128/3π = 2/3 x π x r³r³ = 128/3 x 3/2r = 4 m5. Berpikir suatu bola dengan jari-jari r cm. Jika luas permukaan bola tersebut adalah A cm2 dan volume bola tersebut adalah A cm3, tentukanJawaban a Luas permukaan = 4πr² Volume = 4/3 πr³ 4πr² = 4/3 πr³ r = 3 cmJadi, nilai r adalah 3 Luas permukaan = 4πr² = 4π3² = 36πJadi, nilai A adalah Bangun di samping dibentuk dari dua setengah bola yang sepusat. Setengah bola yang lebih kecil memiliki jari-jari r1 = 4 cm sedangkan yang lebih besar memiliki jari-jari r2 = 8 7. Analisis kesalahan. Lia menghitung luas permukaan bola dengan cara membagi volume bola dengan jari-jari bola tersebut L = V/r.Jawaban L = 4πr², V = 4/3 πr³. Sehingga V = Lr/3, yang berakibat L = 3V/r8. Bola di dalam kubus. Terdapat suatu kubus dengan panjang sisi s cm. Dalam kubus tersebut terdapat bola dengan kondisi semua sisi kubus menyentuh bola lihat gambar di samping.Jawaban Karena semua sisi kubus menyentuh bola maka diameter bola = s, jari-jari bola = s/2a Luas permukaan bola = 4 × π × r²= 4 x π x s/2 x s/2= πs² cm²b Volume bola = 4/3 x π × r³= 4/3 x π x s/2 x s/2 x s/2= πs³/6 cm³9. Kubus di dalam bola. Terdapat suatu kubus dengan panjang sisi s cm. Kubus tersebut berada di dalam bola dengan kondisi semua titik sudut kubus menyentuh Diagonal bidang kubus = diameter bola, diperoleh r = 1/2√3sa Luas = 4πr² = 4π1/2√3s²= 3πs² cm²b Volume = 4/3πr³= 4/3π1/2√3s³= 1/2√3πs³ cm³10. Timbangan dan kelereng. Andi punya dua macam kelereng. Kelereng tipe I berjari-jari 2 cm sedangkan tipe II berjari-jari 4 Misalkan banyaknya kelereng tipe I adalah m sedangkan tipe II adalah = 4/3π2³ = 32/3π cm V2 = 4/3π4³ = 256/3π cm m x V1 = n x V2πm x 32/3π = n x 256/3πm = 8nJadi, perbandingan banyak kelereng pada sisi kiri dengan sisi kanan agar seimbang adalah 8 1. PertanyaanTentukan jari-jari dari bola dan setengah bola tertutup berikut. WW W. Wati Master Teacher Jawaban terverifikasi Pembahasan a. Bola b. Bola c. Bola d. Setengah Bola Tertutup e. Setengah Bola Tertutup f. Setengah Bola Tertutup Mau dijawab kurang dari 3 menit? Coba roboguru plus! 5rb+ 4.6 (35 rating) LS Leni Safitri

Tentukan jari-jari dari bola dan setengah bola tertutup berikut. Jawaban a L = 4 × π × r⊃2;729π = 4 x π x r⊃2;r = √729/4r = 27/2 cm b V = 4/3 x π × r⊃3; = 4/3 x π x r⊃3;r⊃3; = x 3/4r = 12 cm c V = 4/3 x π × r⊃3;36π = 4/3 x π x r⊃3;r⊃3; = 36 x 3/4r = 3 cm d L = 3 × π × r⊃2;27π = 4 x π x r⊃2;r = √27/3r = 3 m e L = 3 × π × r⊃2;45π = 3 x π x r⊃2;r = √45/3r = √15 m f V = 2/3 x π × r⊃3;128/3π = 2/3 x π x r⊃3;r⊃3; = 128/3 x 3/2r = 4 m

MatematikaGEOMETRI Tentukan jari-jari dari bola dan setengah bola tertutup berikut.a. L = 45pi m^2 b. V=128/3 pi m^2 Bola BANGUN RUANG SISI LENGKUNG GEOMETRI Matematika Cek video lainnya Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika Fisika Kimia 12 SMA Peluang Wajib Kekongruen dan Kesebangunan Statistika Inferensia Dimensi Tiga
JawabJari-jarinya 4 mLp = 48π m²Penjelasan dengan langkah-langkahJika setengah bolaV = ¹²⁸/₃π m³Tentukan jari-jari rV = ²/₃πr³¹²⁸/₃π = ²/₃πr³²/₃π64 = ²/₃πr³r³ = 64r = ∛64r = 4 mJari-jarinya 4 mLuas permukaannya =3r²π = 34²π = 316π =48π m²Lp = 48π m²[[ KLF ]] F. L = 2πr²128/3π = 2πr²r² = 128/ 2 × 3r² = 21,3r = √21,3r = 4,6 CmJadi Jari-Jari Bola Dan Setengah Bola Tertutup Tersebut Adalah 4,6 Cm. ~Opung~
Jarijari adalah setengah dari diameter, maka gunakan rumus r = D/2. Rumus ini sama persis dengan cara menghitung jari-jari lingkaran dari diameternya. [1] Jadi, jika sebuah bola memiliki diameter 16 cm, jari-jarinya bisa dihitung dengan 16/2 yaitu 8 cm. Jika diameternya 42, jari-jarinya adalah 21. 2 Cari jari-jari jika keliling diketahui. .
  • bqi610eg57.pages.dev/176
  • bqi610eg57.pages.dev/756
  • bqi610eg57.pages.dev/39
  • bqi610eg57.pages.dev/874
  • bqi610eg57.pages.dev/717
  • bqi610eg57.pages.dev/953
  • bqi610eg57.pages.dev/236
  • bqi610eg57.pages.dev/886
  • bqi610eg57.pages.dev/92
  • bqi610eg57.pages.dev/222
  • bqi610eg57.pages.dev/754
  • bqi610eg57.pages.dev/293
  • bqi610eg57.pages.dev/156
  • bqi610eg57.pages.dev/186
  • bqi610eg57.pages.dev/549
  • tentukan jari jari dari bola dan setengah bola tertutup berikut